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Abstract

A common problem faced in the design of an object-

oriented simulation is how a complex simulation

model should interface with the simulator hardware.

This paper describes a design that isolates the hard-

ware interface from the complex models of a simula-

tion environment. A detailed description of the design

is provided and the advantages and disadvantages of

the design are discussed. A working example of the

abstraction as implemented in the Langley Standard

Real-Time Simulation in C++ (LaSRS++) framework

is also presented. Conclusions drawn from the experi-

ence of implementing the design are also given.

Introduction

Interfacing a complex simulation model with the as-

sociated simulator hardware is a common problem

faced in the design of an object-oriented simulation.

The resulting design should result in an interface that

decouples the model from the simulator hardware in

the system. A tightly coupled design unnecessarily

complicates a system because a class becomes harder

to comprehend, modify, or debug by itself.1  
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A desirable object-oriented design  couples classes

with commonality through inheritance while decou-

pling unrelated classes. Inheritance is one method to

promote code reuse through common interfaces. A

good design is also complete. This means that the

interface of the class encapsulates all of the mean-

ingful behaviors of the class. Finally, a desirable de-

sign creates classes that are unit testable. This allows

the users to easily verify that a class is functioning

properly and to easily test modifications.

The hardware abstraction presented in this paper is

the product of  an iterative object-oriented design pro-

cess. The design provides a decoupled, unit-testable,

and complete  interface to a simulation framework.

The abstraction is intended to simplify the complexity

of connecting simulation models to simulator hard-

ware devices.

The Hardware Abstraction

The hardware abstraction is composed of three main

components: drivers, interfaces, and builders. The

drivers are the classes that actually transmit and re-

ceive data with the simulator hardware devices, the

interfaces are communication classes that pass data

between a simulation model and a driver, and the

builders construct all of the appropriate drivers and

interfaces as needed. Figure 1 uses the Unified Mod-

eling Language (UML) to demonstrate the relation-

ships between the drivers, the interfaces, and the

simulation models.
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Drivers

The driver classes are the classes that actually trans-

mit and receive data with the simulator hardware de-

vices. They typically contain buffers to hold the data

that is transferred with the hardware and member

functions to access or modify the data buffers. In the

above diagram, the class AbcHardwareDriver is

shown to have defined the two virtual functions found

in the abstract class HardwareDriver that send and

receive data. The class also defines methods that ac-

cess and modify data transferred to and from the

hardware. The driver class therefore provides the ab-

stract interface of HardwareDriver and an interface

specific to the “Abc” hardware. The driver classes are

an implementation of the Bridge design pattern.

The Bridge pattern decouples an abstraction from its

implementation.2 This pattern is used whenever the

implementation is to remain hidden from a client† and

the particular implementation is selected at run-time.

The pattern also allows the abstractions and the im-

plementations to be extended through subclassing.

Interfaces

Interfaces are communication classes that pass data

between the driver and the simulation models. The

                                                       
† Any object or function that operates on an object is a

client of the object.

interface class also performs any manipulation of the

data before transferring the data to its destination.

The interface class is essentially a one way or two way

data pump between the driver and the simulation

model. In the illustration above, the AbcHardwareIn-

terface is given a reference‡ to the AbcHardware-

Driver and the XyzSimulationModel when it is in-

stantiated. The class would then use the two refer-

ences to transfer data between the two classes when

appropriate. The interfaces are a variation of the Me-

diator design pattern.

The Mediator design pattern keeps classes from refer-

ring to each other explicitly and encapsulates how the

set of classes interact.2 The strongest asset of the Me-

diator design pattern is that it completely decouples

the two classes from each other. It should be used

whenever two classes are unrelated but need to com-

municate with each other.

Builders

Builder classes construct all of the appropriate drivers

as requested by the user and construct all of the corre-

sponding interfaces required by the simulation mod-

els. The builder classes provide an interface for cre-

ating the driver and interface classes without other

                                                       
‡ Unless stated otherwise, reference refers to both the

reference and pointer types in C++.
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Figure 1 - Drivers, Interfaces, and Simulation Models
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simulation classes having knowledge of the particular

concrete classes. The builder classes could be imple-

mented as an Abstract Factory design pattern, a Fac-

tory Method design pattern, or any other creational

design pattern.

The Abstract Factory design pattern provides an in-

terface for creating families of related or dependent

objects without specifying their concrete classes. The

Factory Method design pattern defines an interface for

creating an object where the subclasses decide which

class to instantiate.2 Many other creational design

patterns exist. The most appropriate pattern should be

used for a particular application.

Design Advantages

The advantages of this design are:

1. The simulation models are completely decoupled

from the hardware driver classes. This allows the

models to be tested with or without simulator

hardware. The behavior of the simulation models

due to different inputs can be fully tested offline

allowing comprehensive analysis of performance

without using valuable simulator hardware re-

sources. Once the performance of a model has

been validated, the hardware inputs/outputs can

be used to validate the model’s performance in

the simulation. This minimizes the validation re-

quired of new models. The decoupled simulation

models also remain portable. A class hierarchy

with an abstract interface defined by the base

class allows  different computation models to be

incorporated into the simulation and use the ex-

isting hardware interface class without modifica-

tion. The model classes may be exported to other

sites without requiring any modifications for use.

A model imported from another site can be

“wrapped” in a class that has the interface re-

quired by the existing hardware interface, thereby

quickly assimilating the new computational

model into the simulation.

2. Modifications to simulator hardware only require

a change to the driver class. Many hardware de-

vices receive major and minor modifications over

their lifetimes. Minor modifications are often

changes to software, buffer sizes, etc. and require

little or no change to the software used to com-

municate with the device. Major modifications

may require a significant change to the software

used to communicate with the device however.

Because the driver encapsulates all of the code

involved with communicating to the device, the

simulation is completely isolated from the modi-

fications.

3. The hardware driver classes can be unit tested.

Any modifications to a driver class can be tested

without the simulation model. A diagnostic pro-

gram can be written that uses the driver to com-

municate with the hardware. The diagnostic pro-

gram serves two functions. It can be used to test

any changes made to the driver program and it

can be used to verify the operation of the hard-

ware prior to use by the simulation. Software

configuration management eases the burden of

testing the new driver class by allowing the user

to verify that the hardware is operating correctly

with a previous version of the driver before test-

ing the new version. (This is usually not possible

when the hardware has been modified).

4. The driver and/or interface class may be used to

emulate the hardware. Often a simulation uses

real-world hardware like a flight management

computer to assist in research or testing. A soft-

ware emulation of a hardware device can be

placed in either the driver or interface class to

allow the simulation to perform necessary com-

munications with the emulated hardware when

the real hardware is unavailable. The hardware

emulation may also be modified to conduct re-

search experiments.

5. Changes to the models can not affect the commu-

nication between a driver and it’s respective

hardware. A modification to a simulation model

may result in bad data being transmitted to a

hardware device, but it can not cause a connec-

tion loss or crash if the hardware interface class

properly limits the data being sent to the hard-

ware device.
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6.  The hardware interface classes are generally

very trivial. The classes simply use the accessor

and modifier methods of the driver class and the

simulation model to transmit data. Any calcula-

tions required when manipulating the data can

easily be verified through testing.

7. The hardware interface classes can often be re-

used by different simulation models without

modification. If the models share a common base

class and the hardware interface only uses a ref-

erence to the base simulation model then no

modification is required for use with different

simulation models.

Design Disadvantages

The disadvantages of this design are:

1. A modification to the interface of a simulation

model requires the hardware interface class to

accommodate the change. Changing the interface

of a class will always require the modification of

any other classes that uses the aforementioned

class. This is expected to present problems and

cannot be avoided in any object-oriented design.

2. A change to a hardware driver interface will re-

quire the appropriate hardware interface classes

to be modified. Again, this is the type of problem

that is hard to avoid in a good object-oriented de-

sign.

3. Public methods are required in model classes for

all data needed by a hardware interface. This re-

quirement may force the designer of a class to

add additional member functions to the class

solely because a hardware interface needs the

data. Usually a data item that is an output of a

model already has public member functions to

allow the class to be unit tested, so this require-

Figure 2 - LaSRS++ Framework
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ment is rarely a problem in a good object-oriented

design.

4. There is an added overhead associated with the

interface class. While the design decouples the

driver classes from simulation models, it burdens

the simulation with additional compute time to

transfer the data between the two systems. Com-

pilers provide the ability to minimize this over-

head by inlining member functions.

The LaSRS++ Framework

The hardware abstraction presented in this paper is

implemented in the Langley Standard Real-Time

Simulation in C++ (LaSRS++) framework. LaSRS++

provides a powerful object-oriented framework for

dynamic vehicle simulations in real-time, flight

simulations in particular. The framework’s object-

oriented design makes the software extremely flexible,

easily maintainable, and provides a high degree of

reuse.3 The framework is also portable and allows the

user to run in either a hard or soft real-time environ-

ment.

LaSRS++ was designed to provide an efficient means

to simulate dynamic vehicles of any level of fidelity.

The framework allows n vehicles to be simulated on

m CPUs and each vehicle may or may not be con-

nected to a simulator hardware device.

Figure 2 illustrates several of the key components of

the LaSRS++ framework. The framework supports

real-time flight simulation through a class called

FlightSim. This class manages the main event loop

and instructs several objects to perform certain opera-

tions at specific times. FlightSim has references to

HardwareControl and Universe and uses the Singleton

classes SimControl and Supervisor. The Singleton

creational pattern ensures that only once instance of

class exists and provides a global point of access to

this instance.2 SimControl contains information about

the simulation such as the current mode, the time

Airc raft

Vehic le

S im ulationModel

B757Fm cSys tem

B757Propuls ionSys tem

B757NavigationSys tem

B757AeroSys tem Tra nsportCockpit

B757HydraulicSys tem

B757LandingGearSystem

B757FccSys tem

B757

Figure 3 - Typical LaSRS++ Aircraft Hierarchy
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step, the current time, etc… Supervisor enforces that

the simulation adheres to hard real-time when appli-

cable. HardwareControl contains lists of all of the

HardwareDrivers and HardwareInterfaces created for

a particular simulation. Universe contains a list of

Worlds and a list of Vehicles.

Figure 3 illustrates a typical aircraft hierarchy. The

aircraft is composed of the different systems that

make up the aircraft model. The illustration shows the

B757 having systems for aerodynamics, propulsion,

navigation, hydraulics, the landing gear, the flight

management computer, the flight control computer

and the cockpit. Any one of these systems may be

used by a hardware interface class to obtain data from

or provide data for a simulator hardware device. A

hardware interface class may be passed references to

the necessary aircraft systems when it is instantiated.

The simulation works in the following manner. First

the drivers are constructed from scheduled hardware

information by the hardware driver builder. The driv-

ers are then placed on the hardware driver list. Next,

the user selects what kind of vehicle to create, what

the initial conditions of the vehicle are, which hard-

ware the vehicle should establish a connection with,

where the vehicle is located, etc… The new vehicle is

then created  and placed on the vehicle list. The vehi-

cle’s hardware interface builder now creates the ap-

propriate hardware interfaces as selected by the user

for the new vehicle and places them in the hardware

interface list. Each hardware interface is passed a

reference to the required simulation model and the

appropriate hardware driver as it is instantiated. Ad-

ditional vehicles and their hardware interfaces may

also be created by the user in the same manner.

Figure 4 is an object interaction diagram for Flight-

Sim and the key components of the simulation that it

Figure 4 - Object Interaction Diagram for FlightSim
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communicates with. At the beginning of any frame

the first task of the simulation application is to march

through the list of drivers and instruct the drivers to

receive new data from the hardware. Next,  the simu-

lation steps through the interface list and instructs

each interface to transfer data from the driver to the

simulation models. The vehicles are then told to per-

form whatever computations they need to perform.

Next, the hardware interfaces are told to access the

new simulation model data and transfer it to the

hardware drivers. Finally, the drivers send the data to

the hardware devices. The process repeats until the

simulation session is terminated.

The LaSRS++ Implementation

Recall that figure 3 illustrates the HardwareInterface

classes exchanging data only with the Vehicle class. It

should be noted that the hardware interface classes

are capable of transferring data with not only the Ve-

hicle classes but also with derived classes like Aircraft

and B757 and any objects that these classes might

contain if public accessor methods are made available.

Figure 4 illustrates several of the component classes

that make the B757 aircraft model. A hardware in-

terface class specific to B757 can contain references to

any of the components of B757 that it has access to.

This allows the interface to directly access or modify

the component system directly.

A typical LaSRS++ hardware interface is shown in

Figure 5. The diagram illustrates the components

used to communicate with the heads-down displays in

the Research Flight Deck (RFD). The RFD is an air-

craft cockpit at LaRC designed to facilitate B757 re-

search projects. The heads-down displays used in the

RFD were written with a program called VAPS (Vis-

ual APplicationS builder). The VAPS programs re-

ceive data to update the displays through a shared

memory segment that is broken into channels. The

VapsHardwareDriver class is responsible for allocat-

ing the shared memory segment needed to provide the

VAPS program with new data.

The RfdVapsInterface class provides the means to

separate the shared memory segment into the chan-

Ha rdwareDriver

v ir tual sendData ()
v irtual  rec ei veData()

HardwareInterfac e

virtual trans fer DataFromDriver()
virtual trans ferD ataToDriv er()

Vehic le

Aircraft

B757

B757Fcc Sys tem  fc c
B757Fmc Sys tem  fm c
B757P ro puls ionSy st em propuls ion
nam e2 : ty pe =  initval

getFcc Sy stem()
getFcc Sy stem()
getP ropuls ionSys tem ()

Va ps Hardw areDriver

dat a_to_s end_t o_hardware
dat a_rec eived_from _hardware

virtual s en dData()
putDataToSend()

RfdVaps Inter face

Vaps HardwareDriver* vaps

A i rcraftRfdVapsIn ter fac e

Vap s HardwareDriver* driver
Airc raft*  airc raft
RfdVaps Int erface rfd_vaps _int erface

virtu al trans ferDataFrom Driver()
virtual trans ferDataToDriver()
getVaps Hardw are Dr iver()
getA ircraft()
getR fdVaps Inter fa ce()

B757Propuls ionSy s tem

B757Fcc Sys tem

B757Fmc Sys temB 757A i rc raftRfdVapsInter fa ce

B757* b757
B757Fcc Sys tem * fc c
B757Fmc Sys tem * fm c
B757Propuls ionSy s tem* propuls ion

virtual trans ferDataToDriver()

Figure 5 – A Typical LaSRS++ Hardware Interface
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nels that the RFD heads-down displays require and

the class also provides modifier functions to update

the data in the channels. AircraftRfdVapsInterface

class actually contains an RfdVapsInterface object

along with a reference to the Aircraft for which it was

created. The transferDataToDriver method uses the

Aircraft reference to obtain all of the data required by

RfdVapsInterface that is common to the Aircraft

class. Angle of attack, mach, roll angle, pitch angle,

and climb rate are examples of the data obtained from

the Aircraft reference. The AircraftRfdVapsInterface

also provides methods to allow the RfdVapsInterface

object to be manipulated by a child class like

B757RfdVapsInterface.

B757RfdVapsInterface is the B757 specific interface

for the RfdVapsInterface. The transferDataToDriver

method  first calls the same method found in it’s base

class and then obtains data from B757 component

systems to update any parameters in RfdVapsInterface

that were not updated in AircraftRfdVapsInterface.

The design allows any aircraft to be used in a simula-

tion in the RFD cockpit with the default heads-down

displays without any modification. Because Air-

craftRfdVapsInterface uses a reference to Aircraft to

obtain data to update the displays, the class may be

used by any dynamic vehicle that inherits from Air-

craft. This feature increases code reuse  in the simu-

lation framework.

The design also allows a child class to override the

default behavior found in the parent class.

B757VapsInterface can modify any of the data sent to

the heads-down displays by AircraftRfdVapsInterface

simply by resetting the data member to the desired

value. This allows different units or values computed

differently to be sent to the same  display.

The hardware abstraction allows testing without the

hardware in either hard or soft real-time (batch).

Batch provides a means to test and debug modifica-

tions without tying up hardware resources. As men-

tioned above, the appropriate drivers are constructed

from scheduling information. This allows the user to

select which hardware interfaces are constructed at

run time. In batch, hardware interfaces and drivers

are exercised but in most cases no data is actually

transferred with a hardware device because the drivers

do not attempt to communicate to the hardware de-

vices. Some of the drivers are configured to commu-

nicate with a hardware device using internet sockets

to allow testing in batch.  This reduces some of the

hardware resource requirements while allow the

simulation to communicate with a selected hardware

device. In hard real-time, data transfers can also be

turned off so that the hardware interfaces and drivers

are exercised but no data is actually transferred with

the hardware.

Cockpits

The cockpit hardware interfaces are treated slightly

differently in the LaSRS++ framework. The interface

class for many simulator hardware devices, out the

window visuals for example, are not appropriate for

containment by a vehicle in an object-oriented design.

On the other hand, an aircraft certainly “has a” cock-

pit. To address this problem, the LaSRS++ framework

provides each aircraft with a cockpit interface and

allows any aircraft to run from any cockpit without

the vehicle being aware of which cockpit it is con-

nected to. An aircraft is given a cockpit interface

when it is created. Currently an aircraft can have a

TransportCockpit, a FighterCockpit, or a Drop-

ModelCockpit. A specific hardware interface for each

cockpit interface determines how a specific cockpit

behaves for a cockpit interface.

This design allows any aircraft to connect to any

cockpit once the specific hardware interface for the

aircraft’s cockpit interface has been created. Duplica-

tion of code is avoided by placing common code in

generic classes and having the specific hardware in-

terface contain the generic class internal to them-

selves.

Conclusions

Because the hardware interface is abstracted away in a

manner that keeps the actual simulator hardware

communications hidden from the rest of the frame-

work, the framework is a robust, portable, and easy to

maintain simulation system. Continual reuse of the

hardware abstraction ensures that new hardware in-
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terfaces can be easily added into the framework and

that these interfaces can be easily tested and debugged

with or without the hardware. The advantages of the

design far outweigh the few disadvantages presented

here. Although the abstraction was originally de-

signed to support the NASA Langley Research Center

flight simulation hardware, the design could be used

in any object-oriented framework to heighten reuse

and maintainability.
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